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SUMMARY

<~ The author investigates the degradation in system
performance as defined by the ambiguity function for two

kinds of signal distortion common to underwater acoustic

systems. For deterministic distortion the effect on signal
processing is noted for distortion arising from the dispersion
, : of the water as well as from the array. Random distortion
effects caused by the inhomogeneity of the medium are defiqed

in terms of a statistical measure on the ambiguity function.
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LIST OF SYMBOLS

I = complex shading of the (m,n) hydrophone

R cos'(ax) - cos (qu)

Ty = cos (ay) - cos (ayR)
cos (ax), cos (ay) = direc:ion'cosines of radius observation

vector

cos'(axR), cos (ayR) = direction cosines of maximum response

axis
k = propagation constant
¢ . = velocity of propagation

a, = ap + azy + 2 a1 aly
a1 aly = expansion coefficients for {%‘ﬂMﬁTxf) and
\

1 ; ‘
= 1N
- dryfl from Figure 2

5 - ©Os a.

x

S = salinity in parts per thousand

A = 2.3 x 106

£, (KHZ) = 21.9 x 10 [6 - 1520/(1 + 273)]

T = temperature in °C

|
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f (KHZ) = frequency of acoustic wave

AL

)

3.38 x 1078

pressure in kg/cm2 (atmospheres)

mean square fluctuation of the index of refraction

over the path (5 x 1072 from Liebermann)

60 cm

length of ray travel _

the lateral displacement of the two observers (receivers)

transverse displacement of the two observers

sinc (x) = M—xl

Re

I .
!

mX

.} ‘= real part of quantity in brackets

X(7,8) = classical ambiguity function
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I. INTRODUCTION

In underwater acoustic systems, signal distortion

is often one of the most serious factors limiting system

performance. Using the ambiguity function as a measure of
system perforﬁance, the following paper describes the changes
that result in this measure as signal distdrtion is included.
The sources of distortion considered are: (a) the sonifying
and receiving arrays, (b) the dispersion of the water, and
(c) the effect of the inhomogeneity of the water due to the

small microfluctuations in temperature.

Since both deterministic and random kinds of distor-
tion are included, two approaches to describe the effect on
system performance are considered. 'For deterministic distor-
tion, types (é) and (b) above, the distortion is described
in terms of an equivalent transfer function. By relating
this transfer function to the classical,two-dimensional
ambiguity function the effect on system performance is derived.
For the random distortion case, type (c), the measure of

system performance used is the expected value of the magnitude

squared of a random ambiguity function.




-II. DETERMINISTIC DISTORTION | |

{i Two sources of deterministic distortion that an
underwater acoustic signal experiences are considered in this

] section. The first is that due to the array; the second is

% ] that due to dispersion of the medium.

By describing the frequency dependence of the array
amplitude pattern and the water dispersion in a Taylor series
about the signal frequency, the effect of the equivalent

transfer function on system performance is easily noted.

Array
In both underwater acoustic as well as electro-

magnetic systems one of the two linear beamforming beam

l stearing techniques is often used. The first technique

utilizes true time delays for each hydrophone, the second

!. utilizes phase shifters. To describe the frequency dependence
i of the Fraunhofer region pattern, a regular spaced planar
array is assumed; the extension to other cases is straight

forward.

"Assuming the array geometry of Figure 1 it is well

known that the amplitude pattern is given by:

M-1 N-1 e
n
A (£, T, -ry) - 2 E: Imn ol s (o, * n'ry) :

m=0 n=0
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From this expression a frequency dependence exists

unless T, = Ty = 0. Therefore in general one can ‘express

this dependence as:

= 1. afn) T 1 n
A (£, 7y 'ry) = Eulbwr o) < SO wy)J (£-£,)
n=o0 =

For a dense uniformly shaded linear array:

X OJ t

The coefficients a,, a, as a function of (%»n MdT, fo) are

A (i, 7)) = sinc [—};M an g Jl +-}; a; (£-£,) +-2—E-1—2-a2 (f-fo)z P
(o]

plotted as Figure 2.

The extension to the rectangular planar array is easily shown

to be:

.
Iy ] (1
A (£, T4, Ty) = Binc gMd o, £ sinc sNdry £

which can be expanded as

A (E, 7

1 £ M1
x? 'ry) sinc [EMd Ve fo]- sinc,LENd'r f

1 A 1 A 2
+ T a, (f-£) + g a, (£-£)° + ...
(o

it J
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The usual phase shift implementation assumes a phase
shift at each transducer output such that at a frequency, say
fo’ a constant phase pressure wave in the desired direction
is a plane. For this case

SN _— m cos a_ - c0s q
A (£, Ty, Ty).= § ) SRR | X o xR
m=0 n=0 »

- n (f cos ay - f° cos ayR)]
Using the above assumptions, it easily follows that for the
linear array:

A‘(f, Tx) = sinc [1 M d (f cos ae fo cos axRﬂ

c
- and
1 ; B :
A (£, Tx) = sinc [E»M d Ty fo] 1 + 33 (f-fo)
) o
2

+ %f(%;) a, (f-fo)2 + ..;

The extension to the rectangular planary array yields:

A (£, T Ty) = ginc {% MdrT, fo] sinc

N

A

_+ al (f-fo) - ']z. (%’;) 82 (f"fo)z

B
5

- - g
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T Therefore, it is seen that unless the maximum response axis

as well as the observation vector are normal to the array

'(“xR = a, = 0 for the linear array and a,p = GyR = Ox = Gy = 0

for the planar array) this array function is frequency depend-

{ﬂQ ent. Although the above expressions become indeterminate at
i o Gl ‘ B LA
: 4 5y 0, it is possible to show that —?; a, —?; a = 0,
I and '
| 2
t B __ 1 [und ]
5 To ay, =-3 [——-c cos ayp J >
ok S 2 2
3 i B S { Mm oo Nrd

. I A RS
S——

Dispersion
A great deal of work has been directed to the charac-
terization of the dispersive effects of sea water on sound., It

is now generally concluded that the significant factors include

the relaxation effects of the MgSO,, ions and viscosity. Schulkin

1

and Marsh™ have suggested that sound loss follows:

2 2

B' £ienz) |

£r

3

SA £ £
o (nepers/meter) =[ 5 T ~(KHZ)
\E7 + £xuz)2

(1 - 6.5 x 10"’9) : ;

Expanding this expression as

HUE) = HEG) by (£ - £)° .,

o




the coefficients b as a function of f, are shown as Figures
3, 4, and 5 for ranges of 1,000, 10,000, and 50,000 yards.
These assume a temperature of 10°C, salinity of 35 parts per

thousand, and zero atmospheres.

System Performance

Using the system model as shown in Figure 6, the
‘effect on system performance of the deterministic signal dis-
tortion considered above can be obtained. By aséuming the
Doppler approximation*, it follbws that the equivalent transfer

function is given by:

| ;i- : H (£) = Ag (£-%, 7, 7)) He (£-8) Hy (f) Mg (£, 7y, 7))
. 1 - I‘ZAn (£-£ )"

i g. From Appendix I, it is seen that the response ;s given by

i2nf
R m2redre o T ag [gh]" 2 [x ¢n ]

* For a discussion of this approximation see'Remleyz.
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III. RANDOM DISTORTION

In addition to the above sources of distortion is
the distortion caused by the inhomogeneity of the water. There
are small microfluctuations in temperature which give rise to
random fluctuatioqs in the velocity of sound from point to
point in the oceaﬁ. If one considers rays propagating through
these microfluctuations the sound will not be constant but will
fluctuate about the mean from ray to ray.

Liebermann3

has measured the fluctuations of temperature
at depths of 30-60 meters using a fast acting thermometer.

mounted on a submarine. He found that the mean temperature
fluctuation was 0.04°C and the correlation of these fluctuations

Ix|
a where a = 60 cm.

as a function of distance is given by e

Chernov4 using Rytov's Method was able to derive
certain covariance functi;ns for the phase and normalized
amplitude fluctuations for small random deviations in the
refractive index. Of particular interest here are his deriva-
tions of the covariance functions of both amplitude and phase
as a function of distance both along the ray path as well as

normal to the ray path (see Figure 7).

For lateral (along the ray path) displacement of AL
he shows, using Liebermann's results as discussed above, that

the covariance for both amplitude and phase is given by:

13
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For the case of transverse displacements of { (normal

to the ray path) he shows that the covariance for both amplitude

and phase is given by:

: 2
b
P

R (1) '1£;M:2 kz ale .

; ; The correlation between amplitude and phase is given

by:
J 2 :
-p -%E log (,:_:2\ ”

It is interesting to note that if the correlation :
intervals are defined as the values of AL and : for which the
covariance functions reach 0.5 of their maximum value we obtain
: AL = 0.5 k 2
i : + = 0.835 a -

15
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Therefore, note that decorrelatioa along the path can be much

slower than that normal to the path.

Svstem Performance

From the above discussion it follows that if ore’
assumes that the ray path is changing over the signal transaission,

as would occur in the case of a moving source receiver, the

received signal could be represented as:

N ) s{t -y .

As shown in Appendix II, if this signal is wmatched filter

detected, the respoanse is given Ddy:

Here, R(%) is given by the Fourier transform of {1 - Ry(o)
- Ry(T) - Rx(T)] . From the above, however, the expressions
for Ry(f) = Rx(f), which permits us to write (1 - R(o) - 2 R(a)}.

Here, for a velocity either along the ray path of

+ v, or normal, the ray.path of V. we easily obtain for R(7)

.\/-.“._ gzkzaL
R(7) = -
2 v, ! 2
1+ fehy)
\kt /
vz .
Vi - -
TR(T) = — Lxtare @
2 ‘
13




El‘ 'IV. CONCLUSION

i L For the deterministic distortion case it is seen that

i
!
:
;
!
!
|
|

the effect on the system response function can be derived in
terms of coefficients of the Taylor Series expression of the
distortion and derivatives of the classical ambiguity function.
The use of this technique is attractive when the series con-
verges rapidly. 1In addition curves were derived to define

the coefficients for array derived distortion as well as

anomalous absorption.

For the random distortion case it was shown that the |
results of the microfluctuations in temperature could be

accounted for by convolving the.resultant spectral density .

i of the error signal with the classical ambiguity function.

IR——___ e ———
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APPENDIX I

Deterministic Distortion

It was found that the equivalent transfer function -

' for the deterministic distortion case could be represented as: ;
b (Ll 5
b H(f) =T ) A (£-£)

It easily follows for the distortion sources considered here

(this is not generally true) that:

H () =T) A (£-£)" + A% (-£-£)"

If the transmitted narrow band signal is given by
S (£) = ¢ (£-£.) + a* (-£-£) ' _ 13

and the receiver matched filter's transfer funcﬁion.is

Hn (f) = [G.* (f-fo + &) +¢a (..f-fo + §)] e-iZﬂfT

it easily follows that the response as a function of doppler |4

shift § and time shift 7 = T -t is given by:

i2nf v Ax o
R(r, 8)=Te ° :\: B [X(f, #)]'
: - (fiZﬂ)n d T(éy
+ complex conjugate | : ﬁ

18
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- APPENDIX II

In this section it is desired td compute the expected
value of the magnitude squared of the response function R{7,%)
in terms of the classical ambiguity function X(T,2). If we
assume narrow band signals it easily follows that the time
delay random variable is equivalent to a phase change ' &

y (t) = anoy(t) which pérmits us to write:

: , : % 1
E< |R<‘“”|2} 3 E{J’S’r[lﬂccli {1+x<t2>je‘ty<t1> y(€p)]

-12m8 (£, ~t,) |
S* (tp) S(t,+r) e dt, dt, )

-J} R(tl-tz)'S(tlj S* (t1+T) S* (tz) S(ty+1) e

S(tl) S* (t1+7)

"
dt; de,

Here we have

; i o : \
R(t;~ty) = E ) {1+X(t1)} [Y(tl) y(£)}

14X(t,)] e
; |

; L R
- E< [L4x(e))] 14x(e)] ) E \) e [yCe1-y (Ep); 5

| l

Now, by assuming that the random pfoceéses are stationary

Gaussian and making use of the Wiener-Kninchin theorem yields

E {In(f,e)IZ} =[x |2 ree-g) ae

- IX(?,Q)EZ * R(2)

19
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